Prof. Dr. Claudia Scheimbauer Anja Švraka

Bordisms and Topological Field Theories [MA5133]

Solutions for the following exercises can be found on the links https://upennig.weebly.com/uploads/7/4/0/3/74037187/2d-tqft.pdf and https://math.berkeley.edu/~qchu/TQFT.pdf.

Exercise 1. Class functions as Frobenius algebra

Let G be a finite group of order n. A class function on G is a function $G \to \mathbb{k}$ which is constant on each conjugacy class. The class functions on G form a ring $\operatorname{Map}(G,\mathbb{k})^G$ under the convolution product, i.e.

$$\phi * \psi(x) := \sum_{x_1 x_2 = x} \phi(x_1) \psi(x_2).$$

(a) Show that the bilinear pairing

$$\kappa(\phi, \psi) := \frac{1}{n} \sum_{t \in G} \phi(t) \psi(t^{-1})$$

gives $\operatorname{Map}(G, \mathbb{k})^G$ the structure of a κ -Frobenius algebra.

(b) Show that under the identification

$$\begin{aligned} \operatorname{Map}(G, \Bbbk)^G &\to \Bbbk[G] \\ f &\mapsto \sum_{g \in G} f(g)g, \end{aligned}$$

 $\operatorname{Map}(G, \mathbb{k})^G$ bijectively corresponds to the center $Z(\mathbb{k}[G])$ of the group algebra.

Exercise 2. Principal G-bundles

Let G denote a topological group, and let $Prin_G(X)$ denote the isomorphism classes of principal G-bundles over the space X.

(a) Show that

$$\operatorname{Prin}_G(S^1) \cong \operatorname{Hom}(\mathbb{Z}, G)/_{\sim} = G/_{\sim},$$

where the equivalence relation \sim is generated by conjugation in G.

(b) Show that for any surface X there is a bijection

$$\operatorname{Hom}(\pi_1(X), G)/G \xrightarrow{\sim} \operatorname{Prin}_G(X).$$

Exercise 3. Dijkgraaf-Witten theory

Recollection. For every M a bordism in Bord₂^{or} with boundary $\partial M = \Sigma_1 \sqcup \Sigma_2$, restricting a principal G-bundle on M to either of the boundary components Σ_i , $i \in \{1, 2\}$, yields a principal G-bundle $P|_{\Sigma_i} \to \Sigma_i$. If $P \to M$ is a principal G-bundle, then we denote by $\operatorname{Aut}(P)$ the G-equivariant homeomorphisms $P \to P$ that cover the identity of M.

Dijkgraaf-Witten theory is an oriented 2-TFT \mathcal{Z} constructed by sending objects M to $\mathcal{Z}(M) := \operatorname{Map}(\operatorname{Prin}_G(M), \mathbb{k})$. For Σ an oriented 2-dimensional bordism from M_1 to M_2 the assignment is

$$\mathcal{Z}(\Sigma): \quad \mathcal{Z}(M_1) \longrightarrow \mathcal{Z}(M_2)$$

$$\mathcal{Z}(\Sigma)(f)(p_2) = \sum_{p_1 \in \text{Prin}_G(M_1)} \sum_{p \in C_{\Sigma}(p_1, p_2)} f(p_1) \frac{\# \text{Aut}(p_2)}{\# \text{Aut}(p)},$$

where $C_{\Sigma}(p_1, p_2) = \{ p \in \operatorname{Prin}_G(\Sigma) | p_{|M_i} = p_i, i \in \{1, 2\} \}.$

- (a) Compute $\mathcal{Z}(\bigcap_{i=1}^{n})$.
- (b) Compute the value of this \mathcal{Z} on the genus g surface with 2 disks removed, i.e. compute $\mathcal{Z}(\Sigma_g \backslash D \sqcup D)$.