Prof. Dr. Claudia Scheimbauer Anja Švraka

Bordisms and Topological Field Theories [MA5133]

Exercise 1. Equivalent definitions of Frobenius algebras

(a) Let A be a Φ -Frobenius algebra. Show that defining

$$\kappa: A \otimes A \to \mathbb{k}$$

as $\kappa(a,b) := \Phi_b(a)$ gives A the structure of a κ -Frobenius algebra.

(b) Conversely, let A be a κ -Frobenius algebra. Show that defining

$$\Phi: {}_{A}A \to (A_{A})^{\vee}$$

as $\Phi(b)(a) := \kappa(a,b)$ gives A the structure of a Φ -Frobenius algebra.

Exercise 2. TFT from a group algebra

(a) Let G be a finite, abelian group, and let k[G] denote the group algebra of G. Set $\mathcal{Z}(S^1) = k[G]$, and let the multiplication and counit of k[G] be given by the linear extensions of

$$m := \mathcal{Z}\Big(\bigcap_{g \in \mathcal{A}} \Big) : \quad \mathbb{k}[G] \otimes \mathbb{k}[G] \to \mathbb{k}[G]$$

$$g \otimes h \mapsto gh$$

and

$$\varepsilon := \mathcal{Z}(\bigcirc) : \mathbb{k}[G] \to \mathbb{k}$$
$$q \mapsto \delta_{ae}$$

Show that this assignment defines an oriented topological field theory

$$\mathcal{Z}: \mathrm{Bord}^{\mathrm{or}}_{2,1} \to \mathrm{Vect}_{\Bbbk}.$$

- (b) What is the corresponding Φ -Frobenius structure on $\mathbb{k}[G]$?
- (c) Compute $\Delta : \mathbb{k}[G] \to \mathbb{k}[G] \otimes \mathbb{k}[G]$. Hint: Use the basis of $\mathbb{k}[G]$.
- (d) Compute the value of this TFT on the genus g surface with 2 disks removed, i.e. compute $\mathcal{Z}(\Sigma_g \backslash D \sqcup D)$.

Exercise 3. Examples of Frobenius algebras

(a) Show that \mathbb{C} is a Frobenius algebra over \mathbb{R} with Frobenius form induced by

$$\varepsilon:\mathbb{C}\to\mathbb{R}$$

$$a + bi \mapsto a$$
.

Could we have chosen a different map $\mathbb{C} \to \mathbb{R}$?

(b) Let G be a finite group of order n. A class function on G is a function $G \to \mathbb{C}$ which is constant on each conjugacy class¹. The class functions of G form a ring R(G). Show that the bilinear pairing

$$\kappa(\phi, \psi) := \frac{1}{n} \sum_{t \in G} \phi(t) \psi(t^{-1})$$

gives R(G) the structure of a κ -Frobenius algebra.

(c) Let X be a compact oriented manifold of dimension n and let $H^*(X) = \bigoplus_{i=0}^n H^i(X)$ denote the de Rham cohomology, which is a ring under the wedge product. Show that the pairing

$$\int: H^*(X) \otimes H^*(X) \to \mathbb{R}$$
$$(\alpha, \beta) \mapsto \int_X \alpha \wedge \beta$$

gives $H^*(X)$ the structure of a κ -Frobenius algebra over \mathbb{R} .

(d) Look up additional examples of Frobenius algebras.

¹Characters, i.e. traces of representations, are examples of class functions.