Prof. Dr. Claudia Scheimbauer Anja Švraka

Bordisms and Topological Field Theories [MA5133]

Exercise 1. TFTs valued in $(Vect_k, \otimes)$

Let $\mathcal{Z} : \operatorname{Bord}_{n,n-1} \to \operatorname{Vect}_{\mathbb{k}}$ be an *n*-dimensional topological field theory. Prove that for every closed (n-1)-manifold Y, the vector space F(Y) is finite dimensional.

Exercise 2. Algebra and coalgebra structure from a 2-dimensional TFT

Let $\mathcal{Z}: \operatorname{Bord}_{2,1} \to \operatorname{Vect}_{\mathbb{k}}$ denote a 2-dimensional topological field theory. Set $A = \mathcal{Z}(S^1)$,

$$m:=\mathcal{Z}\Big(igcircling\Big)$$
 and $\Delta:=\mathcal{Z}\Big(igcircling\Big).$

- (a) Show that m is a unital, associative and commutative product on A.
- (b) Show that Δ is a coassociative and cocommutative coproduct

$$\Delta: A \longrightarrow A \otimes A$$
.

That is, show that Δ satisfies

$$(id \otimes \Delta) \circ \Delta = (\Delta \otimes id) \circ \Delta, \qquad (coassociativity),$$
$$\beta \circ \Delta = \Delta, \qquad (cocommutativity),$$

where β denotes the braiding in Vect_k.

(c) Find a counit ε for A, i.e. a map $\varepsilon: A \to \mathbb{k}$ such that

$$(id \otimes \varepsilon) \circ \Delta = id = (\varepsilon \otimes id) \circ \Delta.$$

Exercise 3. Embedding diffeomorphisms in the bordism category.

Definition 1. Let Y be a closed (n-1)-manifold. An *isotopy* is a smooth map $F: [0,1] \times Y \to Y$ such that $F(t,-): Y \to Y$ is a diffeomorphism for all $t \in [0,1]$. A *pseudoisotopy* is a diffeomorphism $\widetilde{F}: [0,1] \times Y \to [0,1] \times Y$ which preserves the submanifolds $\{0\} \times Y$ and $\{1\} \times Y$. For a manifold Y, the group of diffeomorphisms modulo isotopies is called the *mapping class group MCG(Y)* of Y.

- (a) The goal of the first part of the exercises is to construct a homomorphism $MCG(Y) \to Bord_{n,n-1}(Y,Y)$.
 - (i) Let $f: Y \to Y$ be a diffeomorphism of Y. Construct a cobordism X_f from Y to Y associated to f.
 - (ii) Show that (pseudo-)isotopic diffeomorphisms of Y produce equal associated cobordisms in $\operatorname{Hom}_{\operatorname{Bord}_{n,n-1}}(Y,Y)$.
 - (iii) Is homomorphism from above injective for n = 1 and $Y = * \coprod *?$
- (b) Given a category \mathcal{C} , one can form the quotient $\pi_0 \mathcal{C} = \operatorname{Ob} \mathcal{C} / \sim$, where two objects are equivalent if there is a morphism between them (in either direction). What is $\pi_0 \operatorname{Bord}_{n,n-1}$?