Prof. Dr. Claudia Scheimbauer Anja Švraka

Bordisms and Topological Field Theories [MA5133]

Exercise 1. Tang₁^{fr} is a ribbon category

Definition 1. Let x, y be two dualizable objects in a symmetric monoidal category \mathcal{C} , and $f: x \to y$ be a morphism. Then the dual morphism f^{\vee} is given by

$$f^\vee: y^\vee \stackrel{\mathrm{id}_y \vee \otimes \mathrm{coev}_x}{\longrightarrow} y^\vee \otimes x \otimes x^\vee \stackrel{\mathrm{id}_y \vee \otimes f \otimes \mathrm{id}_{x^\vee}}{\longrightarrow} y^\vee \otimes y \otimes x^\vee \stackrel{\mathrm{ev}_y \otimes \mathrm{id}_{x^\vee}}{\longrightarrow} x^\vee.$$

Recollection. The category of framed tangles is right rigid and pivotal. Let k be any object in Tang₁^{fr} category and let $\theta_k : k \to k$, where $\theta_k = (\mathrm{id}_k \otimes \mathrm{ev}_{k^\vee}) \circ (\beta_{k,k} \otimes \mathrm{id}_{k^\vee}) \circ (\mathrm{id}_k \otimes \mathrm{coev}_k)$.

- (a) Draw a visual representation of the framed tangle corresponding to the twist for k=1.
- (b) Show that twists θ_k satisfy $(\theta_k)^{\vee} = \theta_{k^{\vee}}$.

Exercise 2. Lie algebras

Definition 2. A Lie algebra is a vector space \mathfrak{g} together with an alternating bilinear map $[-,-]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, called the *Lie bracket*, satisfying the Jacobi identity:

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$
 for all $x, y, z \in \mathfrak{g}$.

- (a) Let $\mathfrak{sl}_2(\mathbb{C})$ be the vector space of all two-by-two complex matrices with zero trace. Prove that the Lie bracket given by the commutator (i.e., [A, B] = AB BA) gives $\mathfrak{sl}_2(\mathbb{C})$ the structure of a Lie algebra.
- (b) Show that any associative k-algebra A inherits a structure of a Lie algebra by using the commutator, i.e., [a,b]=ab-ba for all $a,b\in A$.