Prof. Dr. Claudia Scheimbauer Anja Švraka ## Bordisms and Topological Field Theories [MA5133] *Note:* Remarks in parentheses at the beginning of an exercise refer to necessary prerequisites. ### Exercise 1. Abelian structure of the cobordism group Show that the disjoint union induces an abelian group structure on the cobordism group Ω_n . ### Exercise 2. Orientable Manifolds - (a) Show that the circle S^1 is an orientable manifold. - (b) Show that the sphere S^2 is an orientable manifold. - (c) Show that the total space of the tangent bundle of a smooth n-manifold is an orientable manifold. ### Exercise 3. Computation of Ω_0^{or} Compute the oriented bordism group Ω_0^{or} . ## Exercise 4. Computation of Ω_2^{or} - (a) Work through the argument in detail showing that Σ_g is cobordant to the empty set. - (b) Recall that the disjoint union is cobordant to the connected sum. Work through the details for an example that is different from what was shown in the lecture. - (c) Conclude that $\Omega_2^{\text{or}}=0$. (Here you may omit details about orientations of the 3-dimensional cobordisms.) # Exercise 5. Computation of Ω_2^{unor} : - (a) Show that the Klein bottle K is cobordant to the empty set. - (b) (Poincaré duality and Euler characteristic) Show that \mathbb{RP}^2 is non-zero in Ω_2^{unor} , i.e. that there is no compact 3-manifold X with boundary $\partial X = \mathbb{RP}^2$. Hint: Consider the double $D = X \underset{\mathbb{RP}^2}{\cup} X$. What does Poincaré duality imply about the Euler characteristic of 3-dimensional closed manifolds? - (c) Conclude from the above that $\Omega_2^{\mathrm{unor}} = \mathbb{Z}/2\mathbb{Z}$.